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Abstract

spefining the solution to a stochastic differential equation to be
the solution to the Martingale problem of Strook and Varadhan, we obtain
results on the existence of an optimal stationary control for the average
cost per unit time problem, a necessary and sufficient condition for

optimality of a control, and a number of other related results. ?
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‘ 1. Introduction

The purpose of the paper is the development of a necessary
and sufficient "Dynamic Programming" like condition, for the average
cost per unit time problem. The condition is similar to those
developed for other problems by Davis and Varaiya [l] and
Bismut [ 2]. 1In addition to its intrinsic interest, the criterion

appears to be useful for the problem of approximation and computa-

tion (see the corollary and remark in Section 6). The main Theorems
are 3.1 (characterizing the invariant measure), 4.4 (existence of an
optimal stationary control), 5.1 (characterizing the auxiliary Vu(->

function), and 6.1 (necessary and sufficient condition for optimality).

h Also, a number of auxiliary results are obtained.
We will use conditions (Al) - (AS5).
(Al) Let o(+) denote a bounded uniformly continuous and

uniformly positive definite r x r matrix valued function on the

Euclidean space R

Let % denote a compact convex set in some Euclidean space and

which contains the origin.

(A2) £(+),b(+,+),k(+,*) are measurable R',R, and R' valued

functions on Rr, RF x% and RY x %, resp.; b and k are

bounded, and are continuous in their second argument for each value

of the first argument, and b(x,0) = 0. f(-) is bounded on bounded sef

(A3) The set {b(x,a),ki(x,a), a ¢ %} = (b(x, 2),kix, ¥))

is convex and compact for each x ¢ Rr.
Any measurable % valued function u(+) on R is called
an ssible control. Functions b(:,-) and k(-,-) are said

to be admissible if they satisfy (A2), (A3) and have the form
b(x,u(x)),k(x,u(x)) for admissible u(*). We will often write
bY(+) = b(s,u(+)), k() = k(s,u(+)). Our systems model is the

stochastic differential equation
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gy dx(t) = [f(x(t)) + bY(x(t))]dt + o(x(t))dw(t), x(0) = x,
where w(:) 1s a standard Wiener process. In particular, the
process x(-) will be defined to be the solution to the
martingale problem of Strook and Varadhan (3 [; hence w(-) may
be defined implicitly in terms of x(-<). As pointed out by

Bismut [2 ], there are a number of advantages to using the
"martingale problem solution" definition of (1.1), particularly when
questions of existence are of interest. Here, only feedback
(Markov) controls are considered.

The cost functional is

5
1.2} g(a) = lim 1 Y f k(x(s),ulx(sh)ds = f jeiese e Yl ey,
where “u(') is the unique invariant measure for (l1.1), which will

exist under conditions to be imposed. Also, Ei denotes expectation
under control u(:), and initial condition x.

In order for the problem to be well defined, we need some sort
of recurrence for each control. 1In a sense, we will assume ((A4), (A5))
that the effects of f(-) dominate those of b(-,+) for large |x|
and all wu(-). Assumption (A4) will be convenient, and (AS5), while
avoidable, does provide a relatively simple method for obtaining some

required estimates. Both are satisfied by a large number of problems.

(A4) There is a non-negative twice continuously differentiable

real valued function W, (+) _such that W,(x) >~ as [x| » =

and for some ¢ > 0 and compact Kl’

(1.3) 4" (x) ¢ -c, x £ Ky, all admissible u(:),




where
U 82 u )
L = .Z.aij (x) E Y [fi(X) + bi(X)] T
305 oS i i
the differential generator of (1.1), and a(*) = o(<)o'(-)/2.

(AS)  Let Wz(x) = Wi(x). There are constants ¢, > 0, a > 0,

such that for all admissible u(-),

A
(1.4) LW, (%) £ ¢, - q,(x), where q,(x) > 0,

and qz(x)/wl(x) >a > 0. Let K2 denote a compact set such that
q2(X) 2 c, feor "X ¢ KZ'

Remark. Suppose that f(x) = Ax and X E(x) is

asymptotically stable. Then we may use x'Px Wl(x), where P

satisfies the Liapunov equation A'P + PA = -Q < 0. Also, (A5) holds.

For some additional motivation, let us consider a Dynamic
Programming approach. Suppose that there is a smooth function

V(+) and a constant Yy such that

(1.5) inf [ZYW(x) + k(x,u(x)) - y] = 0
u(x)e%
= A(x) + inf (V! (xX)b(x,u(x)) + k(x,u(x)) - y]l, each x.
u(x)e% o




If the solution to (1.1) is well defined for u(x) = u(x), the

minimizer in (1.5), and if
EiV(x(t))/t + 0 as t > =,
then

-
lim = E j k(x(s))yds = ¥-
o T ¥ Jjg

¥

If, in addition, ELV(x(t))/t ~ 0 as t » =, thent y < 8(u). If

Pu(x,t,-) > uu(-) (Pu(x,t,F) = Pi(x(t) € T)) strongly (in
variation) as t -+ «, then 8 (u) = J k(x,u(x))uu(dx).
In general, we do not know whether such a smooth V(¢) or an

optimal control exists. Part of our aim is to replace (1.5) by a
local maximum-principle which does for our problem what the work

of Davis and Varaiya [1 ] or Bismut [2 ] did for the control problem

on a finite time interval or for the discounted control problem.

A one dimensional version - on a finite interval with reflection -
was treated by Mandl [ 5], and an incomplete development of the
r-dimensional version of Mandl's result is given in [ ¢].

In Section 2, the solution to (l.1l) is defined, and some
properties listed. Sections 3, 4, 5, 6 deal with the existence of
an invariant measure for each u(+<), with certain continuity

properties of the measure with respect to b"(.) and with the

+ .
See Kushner (4] for a formal discussion.
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existence of an optimal control, with the existence and properties
t of an auxiliary V(-) function, and with the maximum principle,

resp.
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2, The Solution to (1,1)

Let C, %. and % denote the space of RY valued con-
t

tinuous functions on [0,«), and the o-algebras induced by the

coordinate projections x(s), s < t, and x(s), s < ~, resp.,

where X () 1is the generic element of C. Define fN(-): fN(x) =

£ix) if x| < N, and is zero otherwise. Then, for each x € Rr,

there is a unique measure Qz on (C, %) such that {Qi, x & RV} solves

the martingale problem of
a standard Wiener process

adapted to the (completed

Strook and Varadhan [ 3]. There is also

x,N

W (-) defined on (C, i)Qi), and

with respect to Qﬁ) {&ﬁt} and such that

dax(t) = fN(x(t))dt - n(x(t))dwx’N(t), x(0) = X, w.p.1 QE .

Define S, = {x: [x| < M}. We will show that the soiution is
also well defined for N = =, The stability condition (A3) yields
the following result. 1In the Lemma, suppose (w.l.o.g) that Kl is in
the interior of SM'

Lemma 2.1. Assume (Al)-(A2), (Ad). Let x € S, and N > M.
Define oy = inf{ts x(t) £ Sy ~ Kl}, o(Kl) = JRE{Es XCE) £ Kl}.
Then (PN,EN, correspond to Q:)

N : L b T
(2.1) P {x(t) hits K, before hitting 23sy} > 1 - o
where kM = inf wl(x),
|x|=m
(2.2) ENo < W (x) /¢
% SN =




ru-nu-———--—n-—nn-nnu-—um-u--u-uu—-n'--uuunuuu--—':

=

Proof. By Ito's Lemma, for any t < o (£° corresponds to wu(-) 0)

tr\oM

N
E W) (x(EN0y)) = Wy (x) + Ei JO &fowl(x(s))ds

| I

wl (x) e CE}[\i(tﬂ OM) .

. < [ . ; N
This inequality implies EXWl(x(qw)) = Wl(x), Wl(x) > cENg from

x‘—‘ ’

which both (2.1) and (2.2) follow. @.E.D.

Since kM - ® as M > », it can be shown that (2.1) implies that
: N
(233 lim sup P { sup [x(t)| > M} = 0, for each x and T.
Mot N 0<t<T

By virtue of (2.3), there is a unique solution (Pi ) to the

martingale problem for coefficients (f,0), and each x ¢ g
Similarly, since neither the r.h.s of (1.3) nor Kl depend on

u(+), there is a unique solution (Pi) to the martingale problem

for a1l x ¢ RF and coefficients (f+bu,ﬁ), where u(.) is admissible.

Furthermore,

u 2 u . u

(2.4a) EXU(Kl) < wl(x)/e, Ex corresponding to PX

(2.4b) PY{sup |x(t)| > N}»0 ag N » «, upiformly in u(-),
<P g

and in X in bounded sets

u : s
(2.4c) Px{x(t) hits Ky before hitting BSN} > 1 - wl(x)/kN,

1k SN ", K1 and x ¢ Sy
’ wXru ’ u
There is a Wiener process (+), defined on (C,if,Px) and

adapted to {%1} (completed with respect to P:) and such that

(2.5)  aAx(t) = [£(x(t)) + b (x(t))]At + o(x(t))dw '"(t), w.p.1 (P}).
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For each real 0 < T .< =, define

P s
2T () = [ (07 (x(s) 1% (x (5111w O(s) - 2 j |07t (x(s))b % (x(s)) | %as.
0 0

Then (the proof of (2.6) is the same as that of Theorem 6.2 in [3],

where f(-) = 0; see also Girsanov [7])
{3 A ot o} :
(2.6) dPx = exp Co(u) dPx on (C,1§T).
Thus, (at least on each (C, %&)), for each x all the measures Pg

are mutually absolutely continuous, so that a.s. statements with

respect to one are also a.s. statements with respect to the others

e + o
on each (C, nT). Also (a.s. Px)
(2.7) a0ty - o x(e))pY(x (£))at = awt Y ().

(See Girsanov [ 7] or Davis and Varaiva [ 11)

By [ 3], the solution to the martingale problem with co-
efficients (fN,n) or (fN+bu,c), for admissible bu('), is a
strong Markov and a strong Feller process and in each of these
cases the measures of x(t) have densities with respect to Lebesgue
measure for all x = x(0) and all t > 0. Furthermore, these
densities are positive almost everywhere. By the stability
condition (A4) and (2.3), (2.4b), these facts are also true for
the solution with coefficients (f+bu,o) for admissible b"(:).
Define Pi{X(t) e T} = Pu(x,t,F) and denote its density at y by

pu(x,t,y).

+Whenever such differentials are equated, we mean to equate the
corresponding integrals.
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The following Lemma will be useful in the following sections.

Lemma 2.2. Assume (Al) - (A2) and (A4) - (AS5). Define

U(Kz) = inf {t: x(E) & K2 U Kl}.

Then

2[w2(X) 2 czwl(x)/e]

(2.8) Eiqz(Kz) < , X § K} UK

€ 2°

Proof. By Ito's Lemma and (AS5)

tNo (KZ)

u
L Exw2 2 &

(x(tf\J(Kz))) < W2(x) - Ei Io [c_ - aW. (x(s)) ]ds,
from which we get (use EiJ(KZ) < )

0 < Wy(x) + E $ [c,-aWy (x(s))]ds.

The last inequality, (2.4a) and o(Kz) < m(Kl) imply that

(o o]

u y u u
01 s Wz(x) + CZEXO(Kl) o CjOEXI{G(KZ)ZS}EX(S)O(Kz)ds'

The integrand equals

u
S aiRa)ze) " e =8

Hence, the integral equals Eicz(xz)/z, from which (2.8) follows.Q.E.D. |
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3. The Invariant Measure

Let G and Gy be spheres in Rr, centered at the origin,

k with radii y and Yy, resp., Y < Yy, and boundaries I and By
| resp., and with G D Ky U Kz. Define «t' = inf{t: x(t] ¢ Tl}, {
.l = 3Rf 1tk 2lE) e T, ri = Fpfits £ > Ty x{t) € Tl?, and define
and rg, n > 1, recursively by 55 infit: £ > Té—l' XAE) e Ty
r ! — 1 . > 5 & 1 3 - T - T
¢ nflt: & T X (E) e Fl}. T will be used for , Ty oY
when x € I'. Define Xn = X(Tn). Then, if x ¢ ?,(§n1 is a (homogeneous)
Markov chain on the state space I, and Khasminskii [ 8] uses it to
construct the invariant measure for {x(t)}. Let T(A) denote the
0
amount of time (fol{x(t)SA}dt) that  sett) spends in a Borel set A
during (0,7,] = [0,7), when x(0) = x ¢ T (if x(0) c T, then 1, = 0). |
Theorem 3.1, Assume (Al) - (A2), (A4). Then there is a
constant c3:
. u
(3.1) sup EXL £ Bgn
X |l
u
Both {Xn} and x(+) have unique finite invariant measures (for
each wu(-:)) Gu and Uy’ Lesp., where for each Borel set A
(note that nu(Rr) = 1)
1 (A) = T_(A) /i, (RF)
+ Uu Uu ’
L3nl)
N A = 5 3 u
uu( ) Jruu(ux)ExT(A).

The measure L has a density (with respect to Lebesgue measure)

which is positive almost evervwhere and the value at the point vy

is given by
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T

H (3.3) J pu(x,t,y)uu(dx)-

For any bounded Borel function F(*),

- E
(3.4) J F(x)ﬁu(dX) = Jruu(dx)Ei JOF(x(s))ds.
Also
u
5 s%p Exrl < Wl(x)/e, x £ G.

For each Borel set A and bounded measurable function F(-),

(3. 6) Pu(x,t,A) * e (A) . EuF(x(t)) o J Bix)y (dx), as €& =+ o,
u X u S

Proof. Set Té =tanel o () 7 Gl}. To prove (3.1), we

first show that, for fixed t > 0 and some real c¢ < 1

(3.7} inf p}‘j{r'

e tF > 1 - &,
X,u

(3.7) follows from the fact that there is a ¢ < 1 such that

s
inf Pi{suplx(s)| > Yl} = inf Pu{sup|x + J (f(x(s)) + bY(x(s)))ds
X,u s<t X,u s<t

s
+ J o (x(s))aw* Y (s) | 2 73!
0

S
> inf Pi(sup[[ o(x(s))dw ' M(s)| > vy + x| + Kt} > 1 - c,
u,XtG1 s<t ‘0




=2

where K is a bound on [f + b"| in G Now

1

u e u
B ATp > nk) s ExI{T6>(n—l)t}I{T6>nt}

]

u u u
EXI{T6>(n—l)t}Exum—t{{Tb>t} 2 ExI{T6>(n—l)t}c

which implies that Z nt 1o Cy is an upper bound to EiTé. Hence,
n
ng' < c4 for x g T. IEndeed, (to be used later)
: (3.8) Eg(t)® < Jt) %" < =, x e a.
} n
Equation (3.5) follows from (2.4a), since G D Kl UK,. Thus, Eor
X e 0
T T
E_.t = E j ds + E J ds
> I
0 T
< u_u u . 2
| = EyT' + BB (z1)T1 S €4 * B, (X(1'))/e 2 4
F
for some real Cyr which gives (3.1). H

In [8], Khasminskii proves that there is a unique invariant
measure ﬁu under the conditions (i):Pu(x,t,A) > 0, all open A, all
x and all t > 0, and (ii):that x(<) be recurrent (Khasminskii's
definition of recurrence is implied by (3.5)) and (iii): x(+) 1is a
strong Feller and a strong Markov process. Under the additional

condition (3.1) (for fixed wu(-+)) there is a unique finite invariant




Al

measure . given by (3.2) ([8], Theorems 2.1, 3.2 and 3.3).
Equations (3.3) and (3.4) follow by simple calculations.

Since My and Pu(x,t,-) all have densities which are
positive almost everywhere (all x, and all t > 0), they are
mutually absolutely continuous. Equation (3.6) then follows from
[8], Theorem 3.4 or Doob [8], Theorem 5 (let his ¢ equal our My
and his P, = 0), since B and Pu(x,t,-) are mutually absolutely

1

continuous fer € > 0. Q.E.D.
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4, Existence of an Optimal Control

Theorems 4.1 and 4.2 provide some preliminary results. Theorem
4.3 proves that, in a sense, the invariant measure is continuous

in the function bu(v). This leads directly to the existence

Theorem 4,4, Define g(*,+) = (b(*,*),k(*,")).

Theorem 4.1. Assume (Al) to (A3). Let {u"(-)} denote a
u u
sequence of admissible controls, and write gn(°) = (b n(-),k n(-)).

If there is a bounded measurable function g(+) such that

r

j g™ (x)ax - f g(x)dx, all Borel A,
A

A
then g(+) is admissible in the sense that there is an admissible
u(+) such that G(+) = (b%(+),k%(+)), for almost all x.

Proof. The theorem is a standard existence theorem. See
Roxin [10] or McShane and Warfield [11]. By an argument such as that
used by Roxin [10], g(x) e {y: vy = g(x,a), for some a ¢ %} = g(x,%)
for almost all x. We can assume that the conclusion holds for
all x. Then the theorem follows by the implicit function theorem

i [11)e QeE+Ps

' 5 5 : N 3
A family {¢a} of measures on R is said to be tight if
for each ¢ > 0, there is a compact KE such that ¢Q(Rr—K€) < gy

all ao. Let 2(*) denote Lebesgue measure.
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e

Theorem 4,2. Assume (Al) - (A2), (A4) - (A5). Then {Lu,

EE wis) A

* Remark. The theorem is true, but harder to prove, without

(A5). Since (A5) will be used later anyway, we use it now to

simplify the proof.

Proof. Since Hu(Rr) is bounded uniformly in u(-) (by

the definition of Hy in (3a2))

u

sup E_T(S%) - 0 as N » «,

xel. o

u

N !

fye |y¥] < N} D¢ (See (A4), (A5) for the definition of K_,K

1° )

Then, for x e T,
u e u v 2
(BT (S [ExT(SN)I{r(s&)>o}]
< sup E:ri-sup Pi{r(sﬁ) 2 0} B M1M§°
chl xel
u u

By (2.4c), M < sup W) (x)/ky and by Lemma 2.2, M, < =. The first

chl

assertion of the theorem now follows, since kN + o as N » o,

Fix ¢ and (by tightness) choose compact KC such that

HelK.) 2 1 =~ ¢, all u(*). Then, for t > 0,

u(+) admissible} is tight. Also, uu(A) ~ 0 as 2(A) > 0, uniformly

virtue of (3.1)) to show tightness, we only need to show that (refer to

where s' = {y: |y| > N}. Recall that G, O K; UK, , and assume that
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~16=

u (A) = j uu(dx)Pu(x,t,A) + J uu(dx)Pu(x,t,A)
5 RF =K Ke —

=

€ + sup FY(x,t,A).
XFKC

| AN

Also, by (2.6) (recall that the superscript © corresponds to

u=>b-=0),
u 2 . 40 & 9
[P (x;t!A)] = {EXI{X(t)CA}exP L;O(u)]
t
< Egl{x(t)eA}Ei exp ZCO(u ) E constant-P°(x,t,A).

The last assertion of the theorem follows from the last two inequalities

since ¢ 1is arbitrary and Po(x,t,A) + 0 wuniformly in x e K and

in A, as L@} = ¢. O.E.D.

Theorem 4.3. Assume (Al) to (A5). Let b(-) be a bounded
u
measurable function, and {b (-)} admissible, such that (write sub

Oor superscript n for un)

[ b (x)dx - [ b(x)dx, all Borel A.
A A

Then (Theorem 4.1) there is an admissible u(+) such that b(-) =

bu(o) a.e, Also,

(4.2) exp cg(un) + exp gg(u)

weakly in L, (with respect to Pg) as n + », for each x and

t > 0. In particular,




g

(4.3) P (x,t,A) » PY(x,t,A)

(4.4) EgF(x(t)) > EiF(x(t)), each x, t > 0, Borel A, bounded

measurable F ().

(4.5) [ un(dx)F(x) = j uu(dx)F(x), F(+) bounded and measurable.

Proof. The convergence (4.2) is proved by+ Bismut [2 ],

Theorem IV-3, and (4.3), (4.4) follow from that convergence and (2.6).
Since {un} is tight, it is weakly sequentially compact,
(Billingsley [12], p. 37). I.e., each subsequence contains a

further subsequence {un }  such that, for some probability measure 1,
i

J F(x)un (dx) - [ F(x){i(dx), all bounded continuocus F(-)
] i

(Billingsley [12], pp. 35-37). Let n index such a convergent sub-
sequence, with (weak) limit .
Let F(+) be bounded and continuous. Let € > 0 and define

K_  as in Theorem 4.2 and write

J un(dx)F(x) f un(dx)EﬁF(x(t))

[x un(dx)EgF(x(t)) + r[ un(dx)EzF(x(t)). |
£ R —K€ 5

undereach control,

The second term is < . Since x(+) 1is a Feller process

sup | F (x)
X

™

EZF(X(t)) is continuous in x, for each vy (.), Then, the function

*1n {2}, £ = 0, but the proof is exactly the same.
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EiF(x(t)) is continuous in x and converges to the continuous

function EﬁF(x(t)), by (4.4). This convergence implies that,

for each 6 > 0, there is a Borel set Aé e« KE, with E(Aé) < 4,

such that ’EiF(x(t)) - EQF(x(t))I < ¢ for large n, and x ¢ Ay, xc K .
Those estimates, Theorem 4.2, the arbitrariness of & and the

weak convergence imply that the first term on the right goes to

J Q(dx)EiF(x(t)), as n » «, Since the l.h.s. converges to
K

e

J ﬁ(dx)F(x), and ¢ > 0 1is arbitrary, we conclude that
j (dx)F(x) = J H(@x)EQF (x(£)) .

This equation together with the arbitrariness of t > 0 and F(-),

~
implies that yu 1s an invariant measure - under control wu(-). Thus,

~

the uniqueness Theorem 3.1 implies that u = My Since the result

does not depend on the selected subsequence, we have that Mo ™ B,
weakly, as n » «», and (4.5) holds for bounded and continuous F(+).

Let F(*) be bounded and measurable. Then, for t > 0, the
invariance of My implies

J iy (AX)F (x) = f Ho ()P (x), FL(x) = EQF (x(t)).

By the strong Feller property, EzF(x(t)) is continuous in x.
Now, as in the proof of (4.5) for continuous F(*), the almost
uniform convergence of Fg(x) to Eg F(x(t)), Theorem 4.2 and

the tightness and weak convergence of {un} imply




=
Y u
J un(dx)Ft(x) > J uu(dx)ExF(x(t)),

which must also equal the limit of J un(dx)F(x). This implies

(4.5), since by the invariance of |/ the r.h.s. equals

p
i o (dxyPix). Q.BE.D.
| i

Theorem 4.4. Assume (Al) to (A5). Then there is an optimal

admissible control.

Proof. Let {un(°)} denote a minimizing sequence. Then

f = lim %(un) = inf 6(u). Let n also index a weak star (o(Lm,Ll)
e u(s)
topology) convergent subsequence of {bn(-),kn(-)} with limit

(b(+),k(+)), where we let n replace the index u . There is an
admissible control u(+) such that (Theorem 4.1) (b(*),k(*)) =

(bu(-),ku(-)). If k(-) does not depend on the control, then

ﬂ(un) ~ 6(u) by (4.5). Hence, in this case there is an optimal
control.

Now let k(-) depend on the control. Let Fn(‘) be a
sequence of bounded measurable functions which converges to a function
F(+) 1in the weak star topology. Then” (Bismut [2], Proposition IV-4,

p. 48)
t

t
f Fn(x(s))ds > j F(x(s))ds
0 0

: P o e} . -
in probability (Px, each Xx), as n > «», Note that Ex exp Z“O(V)

is bounded uniformly in x and in the control v («). Let Fn(-)

*1n [2], £ = 0, but the proof 1s exactly the same :£or our case.

- . .
]
n-ﬁn--ﬁ-n--n---ﬁﬂuﬂl..n.llﬂll.llllll.ll“
-
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be defined by Fn(x) = k(x,un(x)), and set F(x) = k(x,u(x)).
By the convergence in probability, the convergence (4.2) and the

boundedness of Ezexp 2 cg(un) uniformly in n,x, we have

u 5 £ t
Exn JOFn(x(s))ds = E_exp Ko(un) JOFn(x(s))ds
(e] t k
+ E_. exp :O(u) JOF(x(s))ds

(4.6)
X €
= B J F(x(s))ds (a continuous

function of x).

Integrating the left and right sides, resp., of (4.6) with respect
to Hn and Hyr resp., and using the invariance of these measures,

yields the two equations

£ u
(4.7a) te(un) = f un(dx) JOExnk(x(s),un(X(sH)ds
LI
(4.7b) £8i(u) = Juu(dx) J Exk(x(s),u(x(s)))ds.
0

Now, (4.6) implies that the right hand integral in (4.7a) converges

to that in (4.7b) for each x. This, together with the tightness of

{un}, the last part of Theorem 4.2, and an argument like that used

in the proof of Theorem 4.3 to show (4.5) yields that

O(Un) =B QB
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5. The Auxiliary v’ (-) Function

Our aim is to get a replacement for the V(.) function in

(1.5), which will plav an important role in the sequel.

In this section the control wu(-.) is fixed, and we return
to the Markov chain {i } of Section 3. For a measurable set
Y e T, et w  (X,v] =P {X, ey}, X ¢ T, and recall that the unique

invariant measure for ﬁn is denoted by iu. Let ¢ Dbe a

finite measure on [. The chain {Xn¥ is said to be uniformlv ¢

recurrent if for each measurable y € I' such that ¢(y) > 0,
T .
(5. 1) 5 2 S I d’ Y, i <m} > 1 uniformly in x ¢ T,
m=1 ¥ M 1
as n -

(Orey [13], p. 26). A sufficient condition for (5.1) is (Orey [13],

p. 29) that if ¢(y) > 0 then there is an n < » and ¢ > 0 (perhaps
depending on Yy) such that
BE s 4

X £ Z 5 e F 5 e

{5.2) LB iR € ¥y X; $ v, 1 <m} >
m=1

for all x el'. If the chain is uniformly ¢ recurrent and a-periodic
then there are constants ¢ and p & (0,1) such that
(5.3) |Pe{x e v} = u (y)| <cp”
uniformly in y and x ¢ I' (a consequence of equation (6.2) in
[(13], p. 26, and the invariance of :u)' Thus, the n-step
transition probability nén)(x,°) converges to . in variation,

at an exponential rate.

Define, for x ¢ R" (see Section 3 for the definition of 7T,

and -U—u) ’




m

=0T
~u u 2! u
(5.4) VvV ix] = B J (k" (x(s)) - 6(u)lds
X lg
n e Tm+l
+ lim ] [E [ x"(x(s))ds - J T (dx) k" (x) ]
n m=1 T 2
m
Tl Tn
(5.5) wWix) = g% [ k¥ (x(s))ds + lim EY J k% (x(s))ds,
* J0 n * T
1
where iu(x) = E(x,u(x)) =i B{a) «
Theorem 5.1. Assume (Al) - (A2), (A4) - (A5). Then V" (x)

and Vu(x) are well defined. There are constants CO,Cl such that

S ) u
Vel | < Cy + C1E, T,
(5.6)
u ) u
[V k=l | < Co + CqE, T~
w "
The tail of (5.5) (Ex ) ) goes to zero as n,m »> «, uniformly in
u rn~u ‘n
X, and Eg J k™ (x(s))ds 1is bounded uniformly in n and x ¢ I.
0
Proof. Let ¢ = & = Lebesgue measure on I. "u(x,y) > O Ak
Yy 1is open in TI. Then Wu(x,Y) >E UE Bl 0. Since ﬁu(-,\)

is continuous (by the strong Feller property - it also follows

from the assertion 6° of Khasminski in (8], with a suitable definition

of U,T there), inf ﬂu(x,y) > 0. Thus, by the criterion (5.2),
xel

with n=1, {X } is uniformly f~recurrent.
n

~

Let F(+) be a bounded measurable function on T. By virtue

of (5+3] ;




'FlIlIllIllIllI-lI-lllll!I!--II--l------n--—r —

S

(5.7) g |Ei§(§n) - Jrﬁu(dx)f(x)| < constant, x ¢ T.

T
Let F(x) = Ei J ku(x(s))ds, which is bounded on T by (3.1).

Note that
A i u,.u L u ‘n+l u
E.F(X ) = E_E_ J k (x(s))ds = E J k7 (x(s))ds.
¥ n % X
X 0 T
n n
Then, by using (3.4) and (5.7),
© u frn+l u ( u, — ,.r
(5.8) f |E f k (x(s))ds - g tdzyks ()i (RT) | < constant, = e T,
n=1I X-’ J“u u &
E I
: u ffl u u ol
This, together with Ex ’ | k (x(s)) |ds < sup[k (x)|EXrl, implies both
/ X
that Gu(') is well defined and also the first line of (5.6).
Now, redo the above argument with ﬁ(x) = Eir, X e T. Then
< o
(5.9) y ?EuEB I J u (dx)Eutl < constant, x ¢ T
& 1%x o X -
n=0 X I
n
Noting+that J ﬁu(dx)Eur = i (Rr), the convergence in (5.8) and
J3 = u T
— P . e u | i
(5.9) allows us to replace §._ . (R) in (5.8) by EE =t = E ds,
u X % X jT
n n

and still to get convergence. From this, we get both that Vu(-)
is well defined, and the last bound in (5.6). The last two

assertions of the theorem follow from (5.8) and (5.9). Q.E.D.

The Lemma gives some useful estimates.

*see (3.4), with F(x) = 1.
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The constant C may have different values in each usage.

admissible wul(-

DG

€5.1L1la)

(5 11b)

Proot. By

v u v.,u
E IV (x(t))| < constant[1+E E_

By (A4), there

Agsume (ALY = (A2), ((A4) = (A5H)Y. Then, far all

),v(-) and all x, s > 0, t > 0, and Markov times o < t.

EvIVH k(D) ] € CIL4W) (x)+E]

gV VY (x(t+s))]| < C[L1+W, (x(t))+s]
) = 1
Y 1v¥(x((s+t)Np)) | < Cl1l+W, (x(t))+s], w.p.1 for
x(t) = dl —
any Markov time o 2 t
Ey p)Wg (X(E+8)) < CIL+W, (x(t)) + s] w.p.l.
u 2
A B (X(‘»))l _‘C[l+":+w2(x)], each ual(s),v(*) B =a Nt
; “v(dx)fvu(x) SRSty J Lv(dx)iwl(x)f < o, each V.
(5.6}

(t)Tl]'

is a constant ¢ such that L/le(x) all X

IA

1 o &

and v(*). Thus, by an application of Ito's Lemma,

A% 2 ( 1
Exw (x(t)) < Wl\x) i e

L L

The last two equations and the bounds (3.5) and (3.8) imply (5.10).

Egquation (5.11)

follows by similar calculationsg .
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We prove (5.12) only for a = t. The general proof is

similar. Write

u 3 u
ilxie)) < C[l+EX(t)Tl] S CLL+W, (x(£))].

Continuing, and using (5.11lc) and (AS5),

< 2 Vv -
E IV (x(t))]° < CE, [1+4W, (x(£))] <
C[1+W2(x)+t].
To prove (5.13), define oy = infl{t: [x(t)| > N}, and for each
integer M define H?(x) = min[wl(x),M], and note that
(by (A5) and Ito's Lemma)
Ello
Vig Ao ) \% o
E W, (x(t Ogtl £ Wy (x) + B, ; [cy=a, (x(s))]ds .

Thus, by bounding q2(-) and letting N - o

t
0 < w2(x) + EX JO[CZ—QW?(X(S))]dS-

Divide the last equation by t, let ¢t - ©, and get (using (3.6), the

convergence of Pv(x,t,-) to the invariant measure uv(-))

-




—

Hence, c > QL j u

S (dx)wl(x). This, together with Vu(x)

v

C-[l+wl(x)], implies (5.13). O.E.D.

Theorem 5.2 will be used to obtain the optimality criterion in

Theorem 6.1.

Theorem 5.2. Assume (Al) - (A2) and (A4) - (A5). Then
u : ¢ u :
V7 (+) 1is continuous and the process Mt: given by
u u u t~u
Mg 2 V(x(t)) -V (x) + f k™ (x(s)) ds
0

is a continuous square integrable martingale, adapted to { ‘t; and

u
under PX, each x.

Proof. First we note several facts. Vu(') does not depend

on Gl' It v < ¥l < Yqr and Gi is a sphere with radius | b

then several cycles (I » I'', etc.) of the process for the Gi case
may be included in one cycle for the Gl case, but the values of
v e
V () are the same. Also, as Yl ¥ Y, sup E:T + 0. Note also that
xeTl

inf Pg{rn >T)+ 1, a8 n + o, each T < =,
X

Let nn, denote the largest integer i such that < < T.

i
Write Eu(x(s)) as ﬁ(s). It will be shown that
T
(S5+14) lim 1lim EY J k(s)ds = 0, uniformly in bounded x sets.
T->o0 m, n-+o

T F\Tn
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This will imply that

u u T

V (x) = E J R(S)ds + e (T,x),
X
0

where ¢e(T,x) » 0 as T » =, uniformly in bounded x sets. This
and the strong Feller property imply that Vu(°) is continuous.

Now, for some constants Ci’ and any integer Q,

i3 N_+1
lim Extj k(s)ds| < Ex J k (s)ds
m,n T(ﬁTn iy

R | Ti+1

+ E, ) IJ k(s)ds’
i>ng' T,
u E +
S CoBeltypn Tl L Ey J( Rsas| C2EXTQI{O>N )

The first and third terms on the right can be made arbitrarily
small (uniformly in bounded x sets) by selecting large T and
small (yl—y), and large T, resp. The central term can be made

small, uniformly in x, by choosing Q 1large. This implies (5.14).

It can be shown that

s+t
[V (x(t+s)) - W (x(t)) + J K4 (x(v))dv] = 0, all s>0, t >0,

x(t) »

where the conditional expectation above exists by Lemma 5.1. The
martingale property follows from this. The continuity and square
integrability follow from the continuity of V'(.) and (5.12),

resp. Q.E.D.
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6. The Maximum Principle

Let u(-) be admissible. It will be seen in Theorem 6.2

that there is a Borel function (a r-row vector) wu(-) such that
for each x ¢ Rr,
u £ u u u
M, = J pH(x(s))o(x(s))daw '%(s) w.p.l Po»
0
(6.1)

u % u 2
E, j [v-(x(s))|“ds < =,
0

Let v(+) be admissible. Then x(<) satisfies (w.p.l PX)

ax(t) = [F(x(t)) + bV (x(t))]dt + o(x(t))awsV

W

By (2.,7), we can suppose that (w.p.1l P

X, 0

(6.2) A Ve = a rOce) = o Mix(e))bY (x())at

aw U () + o hx(e)) MY (x(t)) - bV (x(t)))dt.
Since Pi,Pi and PX are mutually absolutely continuous, all a.s.
statements with respect to one are also a.s. statements with respect
to the others.

Theorem 6.1 is the "maximum"” or "Hamilton-Jacobi" principle,

a natural development for our problem, of some of the ideas in [l1] and [2].

Theorem 6,1. Assume (Al) - (A2), (A4) - (AS5), and let u(*),

v(+) be admissible. If




S ————

(6.3) e Vix) = k") - kKYx)) + vx) (Y (x)-bV(x)) > 0O

on a set A of positive Lebesgue measure, then there is an

admissible control v(+) such that 6(V) < 6(u). The condition

eV (x) < 0 a,e. for each admissible v(-) 1is necessary and

sufficient for u(:) to be optimal, 4

Proof. First, we derive the basic formula (6.5). Using (6.1), (6.2)

u

and the definition of M yields (a.s. Pz)

t.
0= vix)) - vV(x) + ( k" (x(s))ds
0
- f W (x(s)) o (x(s)) [AWV(s) - o L (x(s)) (B (x(s)) - bV (x(s)))ds].
0
Define
I u 2
0. = min{t: | |¢v (x(s))o(x(s))]|"ds = N}.
N lo
‘ Then
tﬂoN
(6.4) 0 = EVW3(x(tNno.)) - v¥(x) + EY f k' (x(s))ds
X N X 0
A s
v N u u v
+ E, jo P (x(s)) [b (x(s)) - b (x(s))]lds

where the expectations exist by Lemma 5.1.
By the uniform integrability implied by (5.12), the first

term on the r.h.s of (6,4) tends to E:Vu(x(t)) as N »+ o, Also., by

X, 0

(2.6) (use W'Y in ag(v-u) not W ) 4
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v t t i =
By J [t x(sd)las = EL exp co(vi-w ) J lv™(x(s)) |ds

te £ Mg

N N
t 1/2
; u t 1l n u 2 _
< [Ex exp 2c0( Vi [EX(I v~ (x(s))] ds) ‘) = AjA,-

tﬂoN

Al < o, and AZN + 0 as N+ o by (6.1). Thus, we can replace

t N oy by t throughout (6.4). Setting O, " 0 in the above

equation yields

> 2
E’ J [pM(x(s))|ds < constant[EZ j }wu(x(s))lzds]l/z.
X Jo - x /o
But
u ft u 2 2
Eg J [V (x(s))]|° < constant{EE}Vu(x(t)) - Vu(x)!2 ;i R
0

< constant{l + t + Wl(x)}z.

Then by the last inequality, Swartz's inequality, (5.1lc), (AS5) and

£
(5.13), B Jowu(X(s))[bu(x(s)) - bY(x(s))]ds is integrable with

respect to e

Furthermore, with N Nt set equal to t, the EZ can be put
inside all the integral signs in (6.4). ©9oing thie and intearatina

each term with respect to e, and using the invariance ot Hy

(under control v(.)), yields J uv(dx)[EXVu(x(t)) - v¥(x)] = 0 and

14
0 = Jods J iy, (@x) Ey (K% (x () + 3" (x(s)) (b7 (x(s)) = bY (x(s))]}.

Now subtract the zero quantity j uv(dx)iv((x)) from the above

equation, and use the invariance of Ny (under control v(+)) to get
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6w J uv(dx)[ul“cx) ~ kY (x)) + ptx) Y x) - bv(x))]},
or, equivalently

(6.5) 0O = J uv(dx) [eu'v(x) + 6} =~ 8(u)l.

Next, let A = {x: eV(x) > 0} and let #(A) > 0. Define
the admissible control v(-) by: Vv(x) = u(x) on B Ry wix) =
vix) on A, Since (6.5) holds for all wu(-),v(-), eu’v(x) > 0 and

0 = f u_(ax) eV
v

(x) + 8(V) = 8(u)l.

But e (x}) >0 on A, and u (A} > 0 by Theorem 3.1. Thus,
v

8(v) < 6(u), proving the first assertion of the theorem. The
second assertion follows easily by the same type of argument on

(6.5). Q.E.D.

Remark. The reason for inserting the corollary is discussed

after the proof.

Corollary. Assume (Al) to (A5). Let wu(+) be optimal and

v(+) an admissible control. Then

u,v

(6.6) 8(v) = 6(u) - J uv(dx)e (x) .

Let wu(-) be bounded on bounded x-sets. For each ¢ > 0, let

R —
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v _(+) denote a (r-row vector) Borel function such that

[ [w{(x) - wu(x)ldx + 0, each bounded set K, as ¢ =+ 0,
,K -
(6-7)
sup (¢ (x)| < =, each bounded set K.
V,X‘K -

s ; T : .
Let K denote a fixed compact set in R, which is the closure of

its interior. Suppose that the function v (*) is calculated by
(6.8) v_(x) = arg inf [k(x,a) + wr(x)b(x,d)], for almost

& neU '

all X ¢ K,
v_(x) = 0, x ¢ K.

Then v (*) can be assumed to be admissible, and
(6.9) Tim 6(v_) < 6(u) - lim J uo @x) [ kY x) - k%)) + v pY(x)]

>0 : *—‘6 Rr_K £

Proof. Equation (6.6) is just (6.5). Bv the complete lattice
property ([14], p. 302) of Ll(K), the inf in (6.8) can be assumed
to be in L, (K). Then, by the properties of %,b(*),k(+) in (A2) and
(A3), we get that the inf (evaluated at x) is in the set
ki{x, %) =+ mr(x)b(xf%), for almost all x ¢ K. Then, the implicit function
theorem cited in Theorem 4.1 can be used to show that there is an

admissible control which attains the inf almost everywhere. We call

this control v((-).
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Note that, if wc(x) = wu(x) for a fixed x £ K, then

(6.10) inf [k(x,a) + ¢_(x)b(x,a)] > inf [k(x,a) + Y (x)b(x,a) ],
ae acY
as £ N
Also, the L1 convergence (6.7) implies that for each 6 » 0, there is ar
> 0 and a set A ; ¢ K with Q(Acé) § for € < g4 and such
that {bv(x) - x| < § for x ¢ A_gr £ < Ege This, together

with (6.10), implies that the difference between the sides in (6.10)

converges in Ll(K) as ¢ » 0. Note that the r.h.s. of (6.10)

equals kY (x) +U u(x)bu(x) (almost everywhere) by optimality of u(*),

and the theorem. Now, by (6.6),

Vv v
(v ) = 8(u) - [ by (@) [T )=k “x)) + 4700 (BYx)I=b T ()]
K £

€611}

- f by (ax) [ (k% (x)=k°(x)) + " (x)b" (x)].
preg

The integrand of the first integral of (6.11) equals

v v ¥

K9 (x) + pRbl )] - [k (k) + v b ST = ) - v (k)BT
The remarks below (6.10), :

/ and the fact that i, (a) > 0 as £&(a) » 0 wuniformly in v(-+)

and A (Theorem 4.2)) imply both that the first integral on the r.h.s.

of (6.11) goes to zero, as ¢ + 0, and the theorem. Q.E.D.
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Remark on the Corollary. The corollary was given because it

will probably be useful when used in conjunction with a procedure
for computing or estimating wu(-). Usually, we would not be able
to calculate uu(-) exactly, and the corollary asserts that, even
if the computation is approximate, its use to get a control may

vield good results, since the cost is "continuous in wg(')", in a

sense, provided that [ uv(dx)lyu(x)| - 0 as N » «, uniformly in

v(<). We would expect that this latter condition would hold quite

often.

Theorem 6.2. Assume (Al) - (A2), (A4) - (A5). Then M. has
the representation (6.1).

Proof. By Theorem 2.3 of Davis and Variaya [1], and the square
integrability of M:, there is a process iu’x(—) such that H
u ft. ;X (2
EX ; E-""(s)]| ds < » for each t and such that

“ 0
u ft-x u X i u
M (8) = | E7" (s)o(x(s))aw " (s), w.p.l. P
‘0

Let &Y denote the class of continuous random functions that are

square integrable martingales under Pi, each x, and are also homogeneous
additive functions of the Markov process x(*), and which are adapted

to 1 gk}. If N(-) ¢ 9%, then the quadratic variation <N,N>, has

a representation which is a homogeneous additive non-decreasing function

of x(¢). It does not otherwise depend on x(0) = x. (See, for

example, Mayer [15], Theorem 3, p. 126. The result is also implied
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by Kunita and Watanabe [16], Appendix.) The processes Mu(-)

and

=
wort(e) = JOG 1(x(s))[dx(s) - (f(x(s)) + bu(x(S))Hds]

are in wY. Also wx,u(_) + Mu(-) are both in /Y, Then

Wy Mu, Wiy Mu>t e YA N Mu' i A S 4<wx,u'Mu>
is a homogeneous additive process. But

t
<wx'u,Mu>t % I e¥r%(s)o (x(s))ds,
0

which must also have a representation as a homogeneous additive
function of x(-), and which does not otherwise depend on x(0) = Xx.
Thus, there is a Borel function wu(-), not depending on x = x(0),

.U, X

such that (s)o(x(s)) = wu(x(s))c(x(s)), for almost all s

w.p.1l Pi, each x. Q.E.D.
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